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Abstract

The low Mach number vortex sound scattered by a sharp wedge formed by a rigid and an acoustically
softer material is analyzed theoretically in the present investigation. A general expression for the time-
varying far field potential due to the incompressible vortex motion around the edge of the wedge is derived
to the leading order of magnitude. Results show that the introduction of a softer material increases the far
field sound pulse magnitude. Also, it is found that the lower the impedance of the material, the louder the
far field sound will be. In addition, it is shown that the effective fluid density inside the porous material is
more important that the flow resistance in affecting the far field sound pulse magnitude when a weak vortex
is concerned.
r 2004 Elsevier Ltd. All rights reserved.
1. Introduction

The theory of Lighthill [1,2] shows explicitly the importance of turbulence as a source of low
Mach number aerodynamic noise. Curle [3] extended this theory to include the effects of solid
surfaces and showed that the noise radiated when a turbulent flow interacts with a solid surface is
more important than that produced within the turbulent flow provided that the Mach number is
low and the flow Reynolds number is high. The work of Ffowcs Williams and Hall [4] shows
further the powerful radiation of sound by the scattering effect of a half-plane in the presence of a
see front matter r 2004 Elsevier Ltd. All rights reserved.
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turbulent flow. Peake and Kerschen [5] investigated the sound generation by the interaction
between a gust and a flat plate cascade. These theories are of great practical significance in
engineering applications, especially when the noise control of ventilation systems is concerned.
Turbulence is hard to model so that many aerodynamic noise problems cannot be easily studied

by using analytical methods. However, the situation becomes much simpler when the low Mach
number turbulence is treated as discrete vortices because the dynamics of the latter can be
obtained using the potential theory. The application of the vortex sound theory [6] or matched
asymptotic expansion [7] then enables the estimation of the noise radiation. The use of vortices
also facilitates the analysis of far field noise radiation due to flow singularity. Typical examples
include the works of Crighton [7], Cannell and Ffowcs Williams [8], Howe [9] and Tang and Ko
[10]. Though the vortices are drastic simplifications of a real turbulent flow, they can still provide
useful insights to the topics, at least to the leading order of magnitude.
The flow inside a ventilation ductwork is in general turbulent and is of low Mach number. This

turbulent flow, when it passes along the ductwork, will interact with the pipeline elements, such as
splitters and dampers, to produce aerodynamic noise (for instance, see Nelson and Morfey [11]).
Also, Ffowcs Williams [12] showed that noise can be generated by the turbulence over a sound
absorbent lining, implying that the dissipative silencer used in building noise control is also a
source of noise. Some flow junctions involve edges or are wedge-like and tend to scatter
aerodynamic noise. However, a useful prediction model for these noises is, to the knowledge of
the authors, not available in existing literature.
In the present study, the noise generated by a vortex filament moving in the vicinity of a sharp

wedge having surfaces of different flow impedance is analyzed theoretically. Apart from
generalizing the results of previous workers, it is hoped that the present results can provide a
deeper insight into the aerodynamic noise generation inside air ductwork and useful information
for the prediction of self-generated noise inside dissipative silencers [13].
2. Theoretical development

Fig. 1 shows the nomenclature used and the flow configuration for the present investigation.
The wedge consists of two materials. One of the materials is assumed porous while the other is
rigid for simplicity. The flow inside the porous material is governed by the effective density re and
flow resistance Rf [14]. The former describes the inertial properties of the fluid in the pores of the
material, and the latter the frictional retardation to flow through the pores. The flow equation
within the porous material is, according to Morse and Ingard [14],

re

qu
qt

þ Rf uþ rp ¼ 0; ð1Þ

where u and p are the fluid velocity and fluid pressure inside the porous material. Here, we
consider the noise radiated when a vortex filament with circulation G originally moving close to
the rigid surface turns around the edge of the sharp wedge. The wedge angle a can vary between 0
and p: The strength of the vortex is assumed to be weak. All length scales in the present study are
normalized by di, the initial perpendicular distance of the vortex from the rigid surface. The
density of ambient fluid is denoted by r; such that the ratio re=r is always greater than unity.
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Fig. 1. Schematic diagram for the present vortex–wedge system (z-plane).
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According to the theories of Crighton [7] and Howe [9], the far field potential associated with
the vortex motion can be estimated once the incompressible flow potential can be obtained. The
analysis is started off by transforming the present vortex system (Fig. 1), which is hereafter
referred to as the z-plane (z ¼ x þ iy; yX0), to a w-plane (w ¼ xþ iz), which is a parallel passage
with 0pzp1 as shown in Fig. 2. The conformal mapping required is

z ¼ eð2p�aÞw: ð2Þ

The branch cut in the z-plane is the positive x-axis. It has been shown by Tang [15] that the flow
impedance is unaltered upon any conformal transformation. The streamfunction in the w-plane,
cw; can be obtained by the integration [15]:

cw ¼

1
4p

R1

�1
G
jkj
ðe�jkjz þ gejkjzÞ e

�jkjz0�e�2jkjejkjz0
gþe�2jkj eikðx0�xÞ dk; zoz0;

1
4p

R1

�1
G
jkj
ðe�jkjz0 þ gejkjz0Þ e

�jkjz�e�2jkjejkjz

gþe�2jkj eikðx0�xÞ dk; zXz0;

8><
>: ð3Þ
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where w0 ¼ x0 þ iz0 represents the position of the vortex in the w-plane and

gðkÞ ¼
ikVrþ ðikVre þ Rf Þ cothðjkjbÞ

ikVr� ðikVre þ Rf Þ cothðjkjbÞ
; ð4Þ

where V is the velocity of the vortex in the w-plane, which is parallel to the x-axis and is a sole
function of z0: V can be calculated by differentiating Eq. (3) with respect to z: Details of the
derivation of Eqs. (3) and (4) can be found in Tang [15] and are not repeated here. The flow
potential in the w-plane, fw; is

fw ¼

i
4p

R1

�1
G
k
ðgejkjz � e�jkjzÞ e

�jkjz0�e�2jkjejkjz0
gþe�2 kj j eikðx0�xÞ dk þ Cl ; zoz0;

�i
4p

R1

�1
G
k
ðgejkjz0 þ e�jkjz0Þ e

�jkjzþe�2jkjejkjz

gþe�2 kj j eikðx0�xÞ dk þ Cu; zXz0;

8><
>: ð5Þ

where Cl and Cu are constants. It can be shown after some algebra that

fw ¼

�G
2p

R1

0 Im 1
k
ðgekz � e�kzÞ e

�kz0�e�2kekz0

gþe�2k eikðx0�xÞ
h i

dk þ Cl ; zoz0;

G
2p

R1

0 Im 1
k
ðgekz0 þ e�kz0Þ e

�kzþe�2kekz

gþe�2k eikðx0�xÞ
h i

dk þ Cu; zXz0:

8>><
>>:

ð6Þ

By observing that the flow potential vanishes as x ! 
1; one finds for non-zero Rf that

Cl ¼ Gðz0 � 1Þ=2 and Cu ¼ Gz0=2: ð7Þ

Expressing z in polar form, z ¼ Reiy; where R is the distance of the vortex from the edge of the
wedge (origin in the z-plane) and y the angular position of the vortex in the z-plane, one obtains
from Eq. (2) that

x ¼
ln R

2p� a
; y ¼ ð2p� aÞz and b ¼

a=2
2p� a

: ð8Þ

Introducing the far field radius r ¼ MR; where M is the Mach number of the flow, the far field
potential due to the vortex motion can then be obtained by first substituting Eq. (8) and R ¼ r=M
into Eq. (6), followed by taking M ! 0 as in Crighton [7].
3. Acoustically hard surfaces

The case for edges with acoustically hard surfaces has been investigated by several researchers,
such as Crighton [7], Panaras [16] and Kambe [17]. However, the case for arbitrary wedge angle
has not been explicitly presented. The condition of hard surfaces requires that j � ikVre þ Rf jbj

kVrj for all values of k, such that gðkÞ ¼ �1 (Eq. (4)) and the final potential is independent of
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b. The flow potential in the w-plane is, according to Eq. (6), given by

fw ¼

G
2p

R1

0
1
k
ðekz þ e�kzÞ e

�kz0�e�2kekz0

e�2k�1
sinðkðx0 � xÞÞdk þ G

2
ðz0 � 1Þ; zoz0;

G
2p

R1

0
1
k
ð�ekz0 þ e�kz0Þ e

�kzþe�2kekz

e�2k�1
sinðkðx0 � xÞÞdk þ G

2
z0 zXz0;

8<
:

¼

G
p

R1

0 coshðkzÞ sinhðkð1�z0ÞÞ
k sinhðkÞ

sinðkðx� x0ÞÞdk þ G
2
ðz0 � 1Þ; zoz0;

�G
p

R1

0 sinhðkz0Þ
coshðkð1�zÞÞ

k sinhðkÞ
sinðkðx� x0ÞÞdk þ G

2
z0; zXz0:

8<
: ð9Þ

Using the formula tabulated in Gradshteyn and Ryzhik [18], one obtains that for z04z;

fw ¼
G
2p

tan�1 tan
p
2
ð1� z0 þ zÞ

� 	
tanh

p
2
ðx� x0Þ

� 	h in

þtan�1 tan
p
2
ð1� z0 � zÞ

� 	
tanh

p
2
ðx� x0Þ

� 	h io
þ
G
2
ðz0 � 1Þ ð10aÞ

and for z0pz;

fw ¼
�G
2p

tan�1 tan
p
2
ð1� zþ z0Þ

� 	
tanh

p
2
ðx� x0Þ

� 	h in

�tan�1 tan
p
2
ð1� z0 � zÞ

� 	
tanh

p
2
ðx� x0Þ

� 	h io
þ

G
2
z0: ð10bÞ

Substituting Eq. (8) into Eq. (10), the potential in the z-plane, f; in polar form is
for yoy0;

f ¼
G
2p

tan�1 cot
aðy0 � yÞ

2

� 
Ra � Ra

0

Ra þ Ra
0

� �
þ tan�1 cot

aðy0 þ yÞ
2

� 
Ra � Ra

0

Ra þ Ra
0

� �� �
þ

aGy0
2p

�
G
2

ð11aÞ

where a ¼ p=ð2p� aÞ: For yXy0; one obtains

f ¼
�G
2p

tan�1 cot
aðy� y0Þ

2

� 
Ra � Ra

0

Ra þ Ra
0

� �
� tan�1 cot

aðy0 þ yÞ
2

� 
Ra � Ra

0

Ra þ Ra
0

� �� �
þ

aGy0
2p

: ð11bÞ

It can be shown that f is continuous at y ¼ y0:
When a ¼ p; the wedge becomes an infinite flat surface and a ¼ 1: It can be shown exactly using

sine rule that, for all y;

f ¼
G
2p

tan�1 R sin y� R0 sin y0
R cos y� R0 cos y0

� 
� tan�1 R sin yþ R0 sin y0

R cos y� R0 cos y0

� � �
: ð12Þ

This is consistent with existing literature, for instance Lamb [19]. For large R, f ! 0:
For 0paop; ao1 and for RbR0 and yXy0; one can approximate Eq. (11b) as

f �
�G
2p

tan�1 cot
aðy� y0Þ

2

� 
1� 2

Ra
0

Ra

� � �
� tan�1 cot

aðy0 þ yÞ
2

� 
1� 2

Ra
0

Ra

� � �� �
þ

aGy0
2p

¼
�G
2p

tan�1 cot
aðy� y0Þ

2

� � �
�

Ra
0

Ra sin aðy� y0Þð Þ � tan�1 cot
aðyþ y0Þ

2

� � ��

þ
Ra

0

Ra sin aðyþ y0Þð Þ

�
þ

aGyo

2p
¼ �

G
p

Ra
0

Ra cosðayÞ sinðay0Þ: ð13Þ
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Exactly the same result can be obtained for yoy0: This shows that there is a relatively
strong radiation back to the downstream side where the wedge is located. For a rigid half plate
occupying the region x40; y ¼ 0 in the z-plane, a ¼ 0 and a ¼ 0:5; and the far field potential
becomes

f � �
G
p

ffiffiffiffiffiffiffi
R0

R

r
cosðy=2Þ sinðy0=2Þ ¼ �

G
p

ffiffiffiffiffiffi
R0

p
sinðy0=2Þ

ffiffiffiffiffiffi
M

r

r
cosðy=2Þ: ð14Þ

For the case investigated by Crighton [7], the half-plane is located at xo0; y ¼ 0: The results
of Crighton [7] can be obtained by rotating the present w-plane 1801 in the anticlockwise
direction. That is, by substituting y and y0 in Eq. (14) by y� p and y0 � p; respectively. The
far field pressure can be estimated by differentiating f in the far field with respect to the
observer time t as in most references (for instance, Refs. [20,21]), where the unsteady Bernoulli
equation with the constant density, r; are used. For a ¼ p; a ¼ 1 and such derivatives vanish
as the vortex is moving parallel to the x-axis in the z-plane. Fig. 3 illustrates the far field
pressure magnitude time variations at R ¼ 100 for different a while the directivity factor is
ignored. The time ta denotes the time at which the vortex passes across the axis of symmetry of the
wedge. One can note that every far field pressure time variation contains a tail, which decays
relatively slowly after the vortex passes over the edge of the wedge. This is typical for two-
dimensional sound radiation due to the non-compactness of the source field so that sound
generated from different parts of the source arrives at the far field at different instants. The rate of
decay is slower at larger a: The larger the wedge angle a; the longer the sound radiation period.
Also, both the tail and the far field pressure amplitude drop rapidly when a approaches 0. One
should note that a increases with a so that the ratio ðR0=RÞ

a actually decreases with increasing a
for RbR0: This implies that the sound generated with a rigid half-plane is more significant at
large distance.
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4. Perfectly inviscid fluids

For a perfectly inviscid fluid, the flow resistance Rf  0: Eq. (4) then reduces to

gðkÞ ¼
rþ re cothðjkjbÞ

r� re cothðjkjbÞ
¼

1þ m cothðjkjbÞ

1� m cothðjkjbÞ
; ð15Þ

where m ¼ re=r: Since the equations for fw for zXz0 and zoz0 yield identical results, only the
one for zXz0 will be considered in the rest of the paper. The potential in the w-plane, according to
Eq. (6), is

fw ¼ �
G
p

Z 1

0

coshðkz0Þ þ m cothðkbÞ sinhðkz0Þ
coshðkÞ þ m cothðkbÞ sinhðkÞ

coshðkð1� zÞÞ
k

sinðkðx� x0ÞÞdk þ Cu: ð16Þ

In this case, Cu ¼ Gðmz0 þ bÞ=2ðm þ bÞ: We consider here the cases for 1omp5 when a porous
material is concerned [14]. However, m can be large when the porous material is replaced by a
heavier liquid (re4r).
In general, Eq. (16) is not easy to solve analytically. However, if jx� x0j ! 1; the solution can

be approximated by considering the approximation for small k,

coshðkÞ sinhðkbÞ þ m coshðkbÞ sinhðkÞ � m sinhððm þ bÞk=mÞ: ð17Þ

As an approximation, one can then write for finite b, jx� x0j ! 1 and k0
¼ kðx� x0Þ;

fw ¼ �
G
p

Z 1

0

coshðkz0Þ sinhðkbÞ þ m coshðkbÞ sinhðkz0Þ
coshðkÞ sinhðkbÞ þ m coshðkbÞ sinhðkÞ

coshðkð1� zÞÞ
k

sinðkðx� x0ÞÞdk þ Cu;

� �
G

mp

Z 1

0

ðm þ 1Þ sinhðkðz0 þ bÞÞ þ ðm � 1Þ sinhðkðz0 � bÞÞ

sinh ðm þ bÞk=m
� � coshðkð1� zÞÞ

k

0

sinðk0
Þdk0

þ Cu:

ð18Þ

Eq. (18) can be solved analytically, even when m ! 0; using the formula shown in Gradshteyn
and Ryzhik [18], and for jx� x0j ! 1 one obtains

fw ¼
G
p
sin

mpz0
m þ b

� 
cos

mp
m þ b

ð1� zÞ
� 

exp �
mpðx� x0Þ

m þ b

� 
: ð19Þ

Fig. 4 shows that Eq. (19) agrees well with the results obtained from direct numerical
integration of Eq. (16). The comparison is not extended to the range x� x044 as fw will be too
small to be handled accurately in the numerical integration. However, one can note from the
conformal mapping adopted that the ratio R=R0 is already very large when x� x0 ¼ 4: After
applying the conformal mapping (Eq. (7)), one obtains

fw ¼
G
p
sin

mpy0
mð2p� aÞ þ a=2

� 
cos

mp
mð2p� aÞ þ a=2

ð2p� a� yÞ
� 

R0

R

� mp=ðmð2p�aÞþa=2Þ

¼ �
G
p
sin

mpy0
mð2p� aÞ þ a=2

� 
cos

mpðyþ a=2mÞ

mð2p� aÞ þ a=2

� 
R0

R

� mp=ðmð2p�aÞþa=2Þ

: ð20Þ

Eq. (20) reduces to Eq. (13) for large m. For m ¼ 1; there is no porous surface. The situation
then reduces to that of a wedge with wedge angle a=2 and rigid surfaces. Eqs. (16) and (20) give
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the same result as that obtained from Eq. (13), by taking the wedge angle to be a=2
instead of a and rotating the far field anticlockwise by a=2: Though m is not likely to be
less than unity, Eq. (20) tends to suggest that the magnitude of the far field pressure
decreases should such a pressure-releasing surface exist. For m ¼ 0; there will be no sound
radiation. Fig. 5 summarizes the effect of m on the far field radiation directivity. It is expected that
the introduction of a pressure-releasing surface allows more sound radiation in a direction closer
to this surface. The larger the wedge angle or the smaller the value of m, the greater this shift will
be.
The far field pressure magnitudes for some values of m at a ¼ p are shown in Fig. 6. This case

has been investigated by Tang and Li [22] on the assumption that the frequency of the radiated
sound is so low that the impedance surface has no effect on the sound radiation. Thus, only the
dipole radiation was considered in Tang and Li [22]. As expected, the scattered sound field
becomes weaker as m increases from unity and the rate of such weakening decreases considerably
quickly for some m. The magnitudes of the sound fields are higher than those shown in Tang
and Li [22]. Together with the fact that the present scattered field magnitude varies with Ma where
a is less than unity, the scattered field is much stronger than the dipole radiation in Tang and
Li [22].
For a less than p; the vortex moves towards the pressure-releasing surface after it passes over

the edge of the wedge. Fig. 7 shows the vortex paths at m ¼ 2; 4 and 1 for a ¼ p=3: The initial
vortex position is at one unit length perpendicular to the hard surface at R0 � 100: It can be noted
that the smaller the value of m, the closer the vortex will be to the pressure-releasing surface
eventually. Fig. 8 shows the sound pressure time fluctuations for finite m at R ¼ 100: These
patterns are basically similar to those for rigid surfaces (Fig. 3). However, one can note that the
peak pressure is higher for smaller m. The tail of the sound pressure fluctuation pattern becomes
shorter as m decreases, implying shorter period for active and significant sound production at
smaller m. The power associated with the radial radiation term 1=R is mp=ðmð2p� aÞ þ a=2Þ;
which increases with m. The far field sound, therefore, decays more rapidly at increasing m.



ARTICLE IN PRESS

-15 -5 5 10 15 20

M
ag

ni
tu

de
 o

f F
ar

 F
ie

ld
 P

re
ss

ur
e

100

10-5

10-4

10-3

10-2

10-1

0-10
Retarded Time t - ta - R/c

Fig. 6. Effect of effective fluid density on sound pressure fluctuations for perfectly inviscid medium. ———: m ¼ 1;
— �—: m ¼ 20; — � � �—: m ¼ 100; — —: m ¼ 1000: a ¼ p=3:

Angular Direction θ−θa 

-3 -2 -1 0

D
ire

ct
iv

ity
 F

ac
to

r

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1 2 3 

Fig. 5. Effect of effective fluid density on the radiation directivity for a perfectly inviscid medium. � � � � : m ¼ 1;
a ¼ p=3; — —: m ¼ 5; a ¼ p=3; ———: rigid wedge, a ¼ p=3; — �—: m ¼ 1; a ¼ 2p=3; — � �—: rigid wedge, a ¼ 2p=3:

S.K. Tang, C.K. Lau / Journal of Sound and Vibration 281 (2005) 1077–1091 1085
Similar results are obtained at different a (op). The effect of wedge angle on the sound
radiation is summarized in Fig. 9. Again, the magnitude of the sound pulse increases with
decreasing a:
5. Combined effects of m and Rf

For a real porous material, Rf is finite and m varies from 1 to about 3 [14]. The far field
potential fw can be obtained from Eqs. (5) and (6). Again, we consider the case for zXz0 and let
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k0
¼ kðx� x0Þ; one obtains

fw ¼
G
p

Z 1

0

ImðGðkÞÞ cosðk0
Þ=k0 dk0

�

Z 1

0

ReðGðkÞÞ sinðk0
Þ=k0 dk0

� 
þ
Gz0
2

; ð21Þ

where

G ¼
ikVr coshðkz0Þ sinhðkbÞ þ ðikVmrþ Rf Þ coshðkbÞ sinhðkz0Þ
ikVr coshðkÞ sinhðkbÞ þ ðikVmrþ Rf Þ coshðkbÞ sinhðkÞ

coshðkð1� zÞÞ: ð22Þ
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It can be shown that

G ¼
ikVrðcothðkz0Þ � cothðkÞÞ

ikVrðcothðkÞ þ m cothðkbÞÞ þ Rf cothðkbÞ
þ 1

� 
sinhðkz0Þ coshðkð1� zÞÞ

sinhðkÞ
: ð23Þ

Again, the analytical solution for Eq. (21) is hard to find without assumption. As we are
interested in the far field where jx� x0j ! 1; fw then depends on the value of G as k ! 0; which
is unity. One can thus conclude to the leading order of magnitude that

fw � �
G
p

Z 1

0

ReðGðkÞÞ sinðk0
Þ=k0 dk0

þ
Gz0
2

) f ¼ �
G
p

Ra
0

Ra cosðayÞ sinðay0Þ: ð24Þ

The directivity of sound radiation for non-vanishing Rf is the same as that with hard surfaces or
at large m.
Fig. 10 illustrates the combined effects of m and Rf on the vortex path. In general, the

vortex propagates towards the porous surface soon after it passes over the edge of the wedge.
It is observed that the larger the value of m or Rf, the less serious the bending of the vortex
path will be. The increase in the flow resistance Rf makes the porous surface less pressure-
releasing and produces the same effect as increasing m. In Fig. 11 the far field sound
pressure fluctuations at R ¼ 100 for a ¼ p=3 and m ¼ 2 are shown. The increase in Rf reduces
the magnitude of the pulse. The less severe vortex path bending towards the porous surface
at larger Rf and m results in smaller vortex acceleration and thus weaker sound radiation.
It is found that the magnitude of the sound pulse increases as m decreases when Rf is fixed
(not shown here). However, the variation becomes insignificant for 4pd2

i Rf =rGX100: The
increase in the wedge angle a again reduces the magnitude of the sound pulse, but the far
field sound fluctuation patterns are very similar to those shown in Fig. 9 and thus are not
presented.
Fig. 12 summarizes the combined effects of a; m and Rf on this pulse magnitude. These

magnitudes are normalized by those with hard surfaces so that the effect of R can be ignored.
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Again, one can observe that louder sound radiation resulted from the introduction of a porous
material. This is the result of the increase of porous material thickness with wedge angle so that
the pressure-supporting interface between the porous and the rigid materials becomes less
influential.
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6. Conclusions

The sound field produced by a vortex engaging the edge of a wedge with inhomogeneous
surface impedance is investigated theoretically in the present study. The wedge is made up
symmetrically of a rigid material and an acoustically softer material, which can be a
porous material or a heavy liquid. The initial location of the vortex is on the rigid material
side far away from the edge of the wedge. The effects of the wedge angle, the effective fluid density
and flow resistance of the softer material on the directivity and magnitude of the far field sound
are discussed. A general expression for the leading order approximation of the sound field is
derived.
In all cases studied, the far field sound is a pulse whose magnitude decreases with increasing

wedge angle. The time variation of each pulse contains a tail which is typical for two-dimensional
sound radiation. The rate of decay of the pulse increases as the wedge angle increases. When the
wedge edge is fixed, the magnitude of the far field pulse decreases as the solid surface becomes
more acoustically hard. The vortex path bends towards the impedance surface after it passes over
the edge of the wedge when the surface impedance is reduced, resulting in high vortex acceleration
and thus stronger sound radiation. The final velocity of the vortex is higher than that in the hard
surface case.
In a perfectly inviscid fluid medium, the far field sound is only affected by the effective fluid

density and the wedge angle. It is found that a finite effective fluid density deflects the directivity
towards the softer surface. The extent of such deflection increases with increasing effective fluid
density. However, the rate of decay of the sound pulse with distance from the edge is lower if the
effective fluid density is reduced. The introduction of a porous surface in a perfectly inviscid fluid
results in louder and more distant noise radiation.
When the fluid possesses non-vanishing viscosity, the flow resistance inside the lattice of the

porous material becomes significant. The higher the flow resistance, the higher the ability of the
porous surface to support pressure, resulting in weaker sound pulse in the far field. However,
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unlike the effect of the effective fluid density, the directivity and the rate of decay of the sound
radiation in the leading order of magnitude are the same as those with hard surfaces, regardless of
the magnitude of the flow resistance.
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